
SPRIGHT: Extracting the Server from Serverless
Computing! High-Performance eBPF-based
Event-driven, Shared-Memory Processing

Paper #490, 12 pages body, 16 pages total

ABSTRACT
Serverless computing promises an efficient, low-cost com-

pute capability in cloud environments. However, existing

solutions, epitomized by open-source platforms such as Kna-

tive, include heavyweight components that undermine this

goal of serverless computing. Additionally, such serverless

platforms lack dataplane optimizations to achieve efficient,

high-performance function chains that facilitate the popu-

lar microservices development paradigm. Their use of un-

necessarily complex and duplicate capabilities for building

function chains severely degrades performance. ‘Cold-start’

latency is another deterrent.

We describe SPRIGHT, a lightweight, high-performance,

responsive serverless framework. SPRIGHT exploits shared

memory processing and dramatically improves the scalability

of the dataplane by avoiding unnecessary protocol process-

ing and serialization-deserialization overheads. SPRIGHT

extensively leverages event-driven processing with the ex-

tended Berkeley Packet Filter (eBPF).We creatively use eBPF’s

socket message mechanism to support shared memory pro-

cessing, with overheads being strictly load-proportional. Com-

pared to constantly-running, polling-based DPDK, SPRIGHT

achieves the same dataplane performance with 10× less CPU

usage under realistic workloads. Additionally, eBPF benefits

SPRIGHT, by replacing heavyweight serverless components,

allowing us to keep functions ‘warm’ with negligible penalty.

Our preliminary experimental results show that SPRIGHT

achieves an order of magnitude improvement in through-

put and latency compared to Knative, while substantially

reducing CPU usage, and obviates the need for ‘cold-start’.

1 INTRODUCTION
Serverless computing has grown in popularity because users

have to only develop their applications while depending on

a cloud service provider to be responsible for managing the

underlying operating system and hardware infrastructure.

The typical costs borne by the user is only for processing

incoming requests and this event-driven consumption of

resources is attractive for the user of cloud applications, es-

pecially when their demand is intermittent. It does however

place the burden on the cloud service provider to provide

adequate resources on demand and ensure quality of service

requirements are met.

In many cases, existing serverless frameworks are prof-

ligate in their resource consumption as they provide the

needed functionality by loosely coupling serverless functions

and middleware components that each run as a separate con-

tainer and/or pod
1
. This can be extremely resource intensive,

especially when deployed in a limited capacity environment,

e.g., edge cloud [53]. There are still a number of shortcomings

to be overcome for building a high-performance, resource-

efficient and responsive serverless cloud. Some contributors

of this overhead are the following.

Use of heavyweight serverless components. In a server-

less environment, each function pod has a dedicated sidecar

proxy, distinct from its application container. Sidecar proxies

help build a inter-function service mesh layer with exten-

sive functionality support, e.g., metrics collection, buffer-

ing, which facilitates serverless networking and orchestra-

tion. However, the existing sidecar proxy is heavyweight

since it is continuously running and incurs excessive over-

heads, e.g., interrupt and context switching. Moreover, since

most serverless frameworks primarily focus on HTTP/REST

API [21, 29, 42], additional protocol adaptation is required

for specialized use cases, e.g., IoT (Internet-of-Things) with

MQTT [15, 69], CoAP [34]. Current design runs protocol

adaptation as an individual component, which can result

in substantial resource consumption. Having such a heavy-

weight design may overload serverless environments, espe-

cially in resource-limited edge cloud or when handling infre-

quent workloads (e.g., IoT). Instead, going a step further and

invoking code for execution on a completely event-driven

basis, without using an individual component, can result in

substantial resource savings.

Poor dataplane performance for function chaining.
Modern cloud-native architectures decompose the mono-

lithic application intomultiple loosely-coupled, chained func-

tions with the help of platform-independent communication

techniques, e.g., HTTP/REST API, for the sake of flexibility.

1
“one-container-per-Pod” is the most common model used by Kubernetes

for running a function instance.

1

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

But this involves context switching, serialization and deseri-

alization, and data copying overheads. This also relies heavily

on the kernel protocol stack to handle the routing and for-

warding of network packets to and between function pods, all

of which impacts performance. Although function chaining

brings flexibility and resiliency to build complex serverless

applications, the decoupled nature of building these chains

also requires additional components (e.g., message broker

such as Apache Kafka [30], to coordinate communication

between functions, and a load balancer like Istio [10]). The

resulting complex data pipelines adds more network com-

munications for the function chain. All of this contributes

to poor dataplane performance (lower throughput, higher

latency), potentially compromising service SLAs.

In this paper, we design SPRIGHT, a high-performance,

event-driven, and responsive serverless cloud framework

that utilizes the shared-memory processing to achieve high-

performance communication within a serverless function

chain. We base the design of SPRIGHT on Knative [11], a

popular open-source serverless framework. Evaluation re-

sults are presented for SPRIGHT and compared with Knative

under various realistic serverless workloads in a cloud en-

vironment. The results with our event-driven shared mem-

ory processing, including an event-driven proxy (we call

it EPROXY) significantly reduces the high resource utiliza-

tion in the Knative design, resulting in much lower latency.

SPRIGHT overcomes the challenges for existing serverless

computing with the following innovations:

(1)We design the SPRIGHT gateway, a per-node component,

to facilitate shared memory processing within a serverless

function chain. The SPRIGHT gateway provides protocol

stack processing by the Linux kernel and distributes the pay-

load to different function chains. It also collects fine-grained

Layer 7 metrics to support intelligent autoscaling.

(2)We implement zero-copymessage deliverywithin a server-

less function chain by using event-based shared memory

communication. Zero-copy message delivery avoids the un-

necessarily duplicated in-kernel packet processing between

the serverless functions, achieves high-speed, highly scal-

able packet forwarding within a serverless function chain.

Event-based shared memory communication helps reducing

CPU usage and alleviate penalties when keeping the function

chain as warm.

(3) We design an event-driven proxy (i.e., EPROXY) using
the eBPF (extended Berkeley Packet Filter [62]). This effec-

tively replaces the heavyweight sidecar proxy. We support

the functions of metrics collection etc, with much lower CPU

consumption.

(4)We utilize packet redirect function provided by eBPF to

further improve packet forwarding performance outside the

serverless function chain. Compared to the kernel network-

ing stack, the eBPF-based dataplane exhibits dramatically

less latency and lower CPU.

(5) We optimize protocol adaptation by running it as an

event-driven component attached to the SPRIGHT gateway,

again avoiding unnecessary network communications be-

tween components. As the protocol adapter is on the critical

packet datapath (execution being triggered by every packet),

this optimization can significantly reduce latency.

This work does not raise any ethical issues.

2 BACKGROUND AND CHALLENGES
There are a variety of implementations for function chaining,

since there isn’t a standard for a general solution architec-

ture for serverless applications. The data pipeline patterns

for function chaining of different open-source serverless

platforms is slightly different, depending on the messaging

model applied, e.g., a publish/subscribe model typically uses

a message broker as the intermediate component for coor-

dinating invocations within the function chain, while the

request/response model typically employs a front-end proxy

to perform invocations within the function chain. We exam-

ine the design of a number of proprietary and open-source

serverless platforms [6, 12, 23, 24, 52] and developed a com-

mon abstract model of the typical data pipeline pattern they

use, as shown in Fig. 1.

The data pipeline for function chains use a message rout-

ing as follows: ① Clients send messages (requests) to a mes-

sage broker/front-end proxy through the ingress gateway of

the cluster. ② The messages are then queued in the message

broker/front-end proxy and registered as an event. ③ De-

pending on the routing configuration of the function chain,

the message is sent to an active pod of the head (first) func-

tion in the chain. ④ The function pod is invoked to pro-

cess the incoming request. When the request message is

Physical NIC

kernel protocol stack

Broker/
Front-end

container

kernel
protocol
stack

veth-pair

Ingress
gateway

container

kernel
protocol
stack

veth-pair
① ② ③ ④ ⑤

① ② ③ ④ ⑤

Function-1’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Function-2’s Pod

user
container

sidecar
proxy

kernel protocol
stack

veth-pair

Response
to client

Figure 1: Networking processing involved in a typical
serverless function chain setup.

2

SPRIGHT: Extracting the Server out of Serverless Computing! Submitted for review to SIGCOMM, 2022

Table 1: Per request Knative overhead auditing of data
pipelines for a ‘1 broker/front-end + 2 functions’ chain.
Note: we exclude client side overheads

Data Pipeline No. External Within chain Total
① ② total ③ ④ ⑤ total

of copies 1 2 3 4 4 4 12 15

of context switches 1 2 3 4 4 4 12 15

of interrupts 3 4 7 6 6 6 18 25

of protocol processing tasks 1 2 3 3 3 3 9 12

of serialization 1 1 2 2 2 2 6 8

of deserialization 0 1 1 2 2 2 6 7

processed by the first function, a response is returned and

queued in the message broker/front-end proxy, to be regis-

tered as a new event for the next function in the chain. ⑤
The message broker/front-end proxy sends this new event

to an active pod for the next function in the chain.

Unfortunately, this data pipeline poses several challenges

that are common across the different serverless platforms.

The core dataplane components, including the ingress gate-

way, message broker/front-end proxy, sidecar proxy, etc,
are usually implemented as individual, constantly-running,

loosely coupled components. In addition, for internal calls

within the function chain, each involves context switching,

serialization/deserialization and protocol processing.

We quantify the overheads in the representative open

source platform Knative, through a systematic auditing per-

formed with a ‘1 broker/front-end + 2 functions’ chain setup

based on the current design depicted in Fig. 1. We assume

all evaluated components are deployed on the same node

and we exclude the overhead on the external client side.

We examine the different overheads incurred in the data

pipeline processing of one request (from ① to ⑤), including

of copies, # of context switches, etc as listed in Table. 1. Due

to implementation-specific differences, e.g., running multi-

ple threads on the same CPU core, there may inevitably be

additional context switches. Our audit aims to quantify the

minimum value of each type of overhead. Based on these

observations, we list the following key takeaways:

Takeaway#1: Excessive data copies, context switches,
and interrupts.
With the existing Knative framework, each request re-

sults in 15 data copies, 15 context switches and 25 interrupts

throughout the entire data pipeline. Surprisingly, most of the

overhead (80%) comes from networking within the function

chain (from ③ to ⑤). Current approaches for serverless func-

tion chaining rely on composition of existing networking

components to support asynchronous and reliable message

exchange between functions, and traffic within the chain has

to go through the message broker/front-end proxy each time

over the kernel. This inevitably introduces additional data

copies, context switches, and interrupts, thus increasing over-

head. Furthermore, as the chain becoming more complex,

the number of data copies, context switches, and interrupts

increase linearly, resulting in very poor scaling.

Takeaway#2: Excessive, duplicate protocol processing.
Protocol processing is another major source of overhead.

As seen in Table. 1, networking within the function chain

accounts for 75% of the total protocol processing overhead,

reflecting the problematic design of current serverless func-

tion chains. Protocol processing tasks including checksum

calculation in software, and complex iptables processing con-

tribute to latency and results in poor scaling (especially as

the number of iptables rules increases) [51].

Takeaway#3: Unnecessary serialization/deserialization.
HTTP/RESTAPIs require additional serialization and dese-

rialization operations to convert application data to transmit

or receive from the network, which works in byte streams.

These operations incur significant overhead (lowering through-

put) and adds latency [67]. Each step in the data pipeline for

the function chain (from ③ to ⑤) introduces 2 serialization

and 2 deserialization operations. Current designs further am-

plify this degradation with an excessive number of protocol

stack traversals as shown in Table. 1.

Takeaway#4: Individual, constantly-running heavy-
weight components.

Serverless platforms equip each function pod with an indi-

vidual, constantly-running sidecar proxy to handle inbound

and outbound traffic. The presence of this sidecar proxy intro-

duces a significant amount of overhead. Just going through

step ④, the sidecar proxy introduces 2 data copies (50%), 2

context switches (50%) and 2 interrupts (33%). To understand

the impact of this overhead on dataplane performance, we

evaluate several sidecar proxies, including the Envoy sidecar

from Istio [9], Queue proxy from Knative [49], and the OF-

watchdog from OpenFaaS [18]. We use these sidecar proxies

to work with NGINX [17] as a representative HTTP server

function. We also use this NGINX HTTP server function

without sidecar proxies as the baseline to quantify the addi-

tional overhead introduced by the sidecar proxy. We disable

autoscaling and limit ourselves to a single function instance.

We use wrk [3] as the workload generator and send variable-

size HTTP traffic (2% 10KB requests, 98% 100B requests)

directly to the function pod (including sidecar). Both wrk
and the function pod are running on the same node.

Our experimental results are shown in Fig. 2. Equipping

a sidecar proxy results in a 3×–7× reduction in throughput,

3×–7× higher latency, and a significant increase (3×–7×) in
CPU cycles per request. Even though the overhead varies, it

is common across all the evaluated sidecar proxies. Looking

deeper, at the CPU overhead breakdown, 50% of CPU cycles

are consumed by the kernel stack for the sidecar proxy. This

substantial overhead of sidecar proxies undercuts the benefit

3

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

Null: the function
w/o sidecar

OFW: OpenFaaS’s
watchdog

QP: Knative’s
queue proxy

Envoy: Envoy
sidecar

Null QP Envoy OFW
0

5

10

15

20

RP
S

(X
 1

K
re

q/
s)

0.0

0.1

0.2

0.3

0.4

0.5

Av
e.

 la
te

nc
y

(m
s)

RPS Latency

Null QP Envoy OFW
0

2

4

6

8

(X
 1

M
) c

yc
le

s/
re

qu
es

t sidecar container
NGINX container
kernel stack

Figure 2: Performance and overhead breakdown of dif-
ferent sidecar proxy implementations.

of serverless computing, and calls for a more lightweight

serverless capability to provide the same functionality.

Summary: The goal of serverless computing was to over-

come the inefficiencies of ‘serverful’ computing. However,

the excessive overhead in current serverless frameworks

shows that the ‘server’ is still entrenched in serverless com-

puting. Through our auditing, we show that the loosely

coupled construction of existing components for serverless

computing results in substantial unnecessary processing

overhead, possibly discouraging the implementation of mi-

croservices as function chains. This poor dataplane design

and having individual, constantly-running components in

the function chain prompted us to create a more stream-

lined, responsive serverless framework by considering high-

performance shared memory processing and lightweight

event-driven based optimizations to help extract the ‘server’

out of serverless computing.

3 SYSTEM DESIGN OF SPRIGHT
In this section, we start with the overall architecture of

SPRIGHT by justifying the design of each component and

discussing the benefits it achieves in improving serverless

environments. We then talk about each part separately, in-

cluding the shared memory processing for communication

within serverless function chains, the lightweight event-

driven proxy (EPROXY), the dataplane acceleration for com-

munication outside the function chain, lightweight protocol

adaptation and intelligent autoscaling.

3.1 Overview of SPRIGHT
In this work, we start with open-source Knative as the base

platform [11]. Using an innovative combination of event

driven processing and shared memory, we support high per-

formance while being very resource-efficient and providing

the flexibility to buildmicroservices using serverless function

chaining. Importantly, we extensively use eBPF in SPRIGHT

for networking and monitoring. eBPF is an in-kernel light-

weight virtual machine that can be plugged in/out of the

Data Plane

Control Plane
Routing

Controller
Metric
ServerAutoscaler

Ingress
Gateway

Function 1

User
container

Metric
flow

Descriptor
flow

Packet
flow eBPF program

function
chain
config.

 SPRIGHT gateway

Function 2

User
container

Function 3

User
container

 Shared memory

Routing
update flow

EPROXY

SKMSG SKMSG SKMSG

SKMSG

Routing table

Figure 3: The overall architecture of SPRIGHT

kernel with considerable flexibility, efficiency, and config-

urability [62]. The execution of eBPF programs is triggered

only whenever a new event arrives, thus working naturally

with the event-driven serverless environment. By utilizing

eBPF, user space components can attach various event-driven

programs to kernel hook points (e.g., the network or socket

interface). This enables high-speed packet processing [40, 66]

and low-overhead metric collection [47, 71]. eBPF achieves

its configurability through eBPF maps, a configurable data

structure shared between the kernel and user space. With

eBPF maps, a more flexible dataplane can be implemented

with customized routing. The good features of eBPF help

us provide functionality with resource use that is strictly

load proportional, a highly desirable toolbox for serverless

environments.

The overall architecture of SPRIGHT is shown in Fig. 3.

To flexibly manage traffic in and out of the function chain

in SPRIGHT and avoid duplicate protocol processing within

the chain, we introduce a SPRIGHT gateway. It acts as a

reverse proxy for the function chain. Each node is deployed

with a SPRIGHT gateway to efficiently manage processing

within the local function chain. The SPRIGHT gateway re-

lies on kernel protocol stack for protocol processing and

extract the application data (i.e., Layer 7 payload). It inter-
cepts incoming requests to the function chain and copies the

payload into a sharedmemory region. This enables zero-copy

processing within the chain, avoiding unnecessary serializa-

tion/deserialization, protocol stack processing, and expen-

sive data copies. The SPRIGHT gateway invokes the function

chain for requests and processes the results, constructing

the HTTP response to external clients.

To eliminate the impact of additional networking com-

ponents for function chaining, we design Direct Function

Routing (DFR). DFR fully exploits the shared memory, and

4

SPRIGHT: Extracting the Server out of Serverless Computing! Submitted for review to SIGCOMM, 2022

leverages the configurability provided by eBPF maps. DFR

allows dynamic update of routing rules and uses shared

memory to pass data directly between functions.

We design a lightweight, event-driven proxy (EPROXY)

that uses eBPF to construct the service mesh instead of a

continuously-running queue proxy associated with each

function instance, as is used by Knative. Thus, we reduce a

significant amount of the processing overhead. To accelerate

the data path outside the function chain, we utilize XDP/TC

hooks in eBPF to forward packets between other serverless

dataplane components, e.g., ingress gateway and to/from the

chain. An XDP/TC hook processes packets at the early stage

of the kernel receive (RX) path before packets enter into the

kernel iptables [32, 40], resulting in substantial dataplane

performance improvement without dedicated resource con-

sumption, compared to a constantly running queue proxy

that depends on the kernel protocol stack.

Event driven processing can help tremendously in interfac-

ing serverless frameworks, that have aHTTP/RESTAPI, with

a variety of application-specific protocols (e.g., for IoT with

MQTT [15], CoAP [34]). Current designs use a separate pro-

tocol adapter for translation between these protocols. How-

ever, since SPRIGHT’s shared memory processing directly

works on payloads independent of the application layer (L7)

protocols, the protocol adapter can ideally run as an inter-

nal event-driven component that is part of the SPRIGHT

gateway. This way, we achieve a much more streamlined

protocol adapter design, using resources strictly on demand.

Although these optimizations are built around the Knative-

based environment, our concepts and methodology can also

be broadly applied to other serverless platforms.

3.2 Optimizing communication within
serverless function chains

3.2.1 Shared memory within a function chain. SPRIGHT

allocates a shared memory pool with Linux HugePages for

each serverless function chain. Using HugePages can reduce

the access overhead of in-memory pages, thus improving the

performance of serverless functions when accessing data in

the shared memory pool. In addition, the shared memory

pool within the function chain supports queueing, to helping

sustain traffic bursts.

To enable zero-copy data movement between functions,

shared memory processing relies on packet descriptors to

pass the location of data in the shared memory pool, which

is then accessed by the function. One option for implementa-

tion is to use DPDK, which uses a poll mode driver to deliver

the packet descriptor through its multi-process support [16].

DPDK has been extensively used to build up high perfor-

mance dataplane for cloud services [70]. While DPDK allows

SPRIGHT gateway pod

SPRIGHT
gateway
container

veth socket
TX

RX

eBPF
maps

metrics
map

EPROXY

socket
map Shared memory

Function pod

User
container

socket

Descriptor
delivery

Read/Write
with descriptor

SKMSG

SKMSG

lookup

lookup

Function pod

User
container

socket
SKMSG

Descriptor
delivery

Read/Write
with descriptor

Read/Write
with descriptor① ②

Figure 4: Event-driven design, shared memory mecha-
nism, and EPROXY of SPRIGHT

for fast packet processing and low latency, it continuously

consumes significant CPU independent of traffic intensity.

In SPRIGHT, instead of using heavyweight polling-based

shared memory processing, we dynamically extend the use

of the socket interface at the function pod by attaching an

eBPF Socket Message program (SKMSG in Fig. 4) [58]. SKMSG
works with eBPF’s socket map to enable message redirec-

tion between socket interfaces of function pods. The packet

descriptor in SKMSG is a small 16-byte message which in-

duces minimal transmission overhead. A packet descriptor

contains two fields: the instance ID of next function and a

pointer to the data in shared memory. Once the SKMSG re-

ceives a packet descriptor, it extracts the instance ID of the

next function, which is then used to query the eBPF’s socket

map to retrieve the target socket interface information (i.e.,
file descriptor). SPRIGHT’s gateway is used to maintain the

in-kernel eBPF’s socket map (Fig. 4). When a new function

pod instance is started-up, the SPRIGHT gateway updates its

instance ID and socket interface information into the socket

map to support redirection between socket interfaces.

The packet descriptor redirection performed by SKMSG
bypasses the kernel protocol stack, incurringminimal latency

overhead. SKMSG operates in a purely event-driven manner,

avoiding the need to busy-poll packet descriptors and saving

CPU resources. Thus communication overhead is entirely

load-dependent.

3.2.2 Event-based vs. polling-based shared memory pro-
cessing. To demystify the most appropriate shared memory

processing mechanism in the context of serverless comput-

ing, we compare the SPRIGHT’s event-based share memory

5

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

� � � � �� �� �� ��
�
��
�
��
�

&RQFXUUHQF\

�
��
�

��
��

��
��

��
��

&3
8�
XV
DJ
H�
��
�

.Q��*:

.Q��43V

.Q��6)V

� � � � �� �� �� ��� ��� ���
&RQFXUUHQF\

�

��

��

��

��

��

53
6�
�;
��
.�
UH
T�
V�

���

���

���

���

���

���

���

$Y
H�
�OD
WH
QF
\�
�P
V�

'3'.�536
6.�06*�536
.QDWLYH�536
.QDWLYH�/DWHQF\
6.�06*�/DWHQF\
'3'.�/DWHQF\

� � � � �� �� �� ��
�
��
�
��
�

&RQFXUUHQF\

�
��
�

��
�

��
�

��
�

&3
8�
XV
DJ
H�
��
�

6.06*�*:
6.06*�6)V

'3'.�*:
'3'.�6)V

(a) RPS and latency

(b) CPU usage of DPDK and SKMSG (c) CPU usage of Knative

Figure 5: Comparison between polling-based and event-
driven shared memory processing with 1 gateway
pod and 2 serverless function pods. Kn: Knative; QPs:
Queue proxies; SFs: serverless functions; GW: gateway

processing based on SKMSG with polling-based shared mem-

ory processing based on DPDK, with a function chain con-

taining 2 function pods. We run a SPRIGHT gateway on the

same node and use Apache Benchmark [1] on a second node

as the workload generator. We additionally set up a function

chain with the base Knative environment and use NGINX as

the front-end proxy to coordinate the communication within

the chain. Both SPRIGHT gateway and NGINX proxy are

configured with two dedicated cores for a fair comparison.

Note: We collect the results from 10 repetitions. All results

have 99% confidence intervals.

As shown in Fig. 5, with low concurrency, e.g., at 32, SKMSG
(0.024ms) shows higher average response delay compared

to DPDK (0.02ms), but still with much lower (almost 6×)
response delay compared to Knative (0.138ms). In terms of

RPS, both DPDK (50.3K) and SKMSG (41.7K) are substantially

higher than Knative (7.2K), with a significant 5.7× improve-

ment.

As SKMSG relies on in-kernel eBPF program to deliver

packet descriptors, it incurs the overheads for context switch-

ing contributing the extra latency. However, SKMSG process-

ing latency is masked when the concurrency increases (≥ 32),

with the overlap of the context switching overhead and other

processing. Throughput increases rapidly, up to 5× that of

Knative. Although, SKMSG has 1.2× lower peak throughput

than DPDK, SKMSG being purely event-driven, has a substan-

tially lower CPU usage. Both of those approaches have much

lower overhead compared to Knative. With a concurrency is

1, SKMSG consumes 32% CPU, which is 9.6× and 4.5× less than

DPDK (308%, or more than 3 CPU cores fully used) and Kna-

tive (143%), respectively. When the concurrency increases

to 32, SKMSG consumes 259% CPU, which is still less than

DPDK (359%). Comparatively, the CPU usage of base Knative

increases to a shocking 1585% (more than 15 CPU cores used)

at a concurrency of 32. 70% of Knative’s CPU is consumed by

its queue proxy. Even with increasing concurrency (≥ 32),

SKMSG has a consistent and steady savings in CPU compared

to the others. Individual, constantly-running components

(queue proxy with Knative or DPDK’s poll mode using up

CPUs) have excessive overhead. More importantly, when

there is no traffic, SKMSG consumes negligible CPU resources.

We observed that both SKMSG-based SPRIGHT gateway and

function pods consume zero CPU when there is no traffic,

making it possible to keep a function pod ‘warm’ to overcome

the ‘cold start’ delay. Thus, SKMSG-based shared memory pro-

cessing is an ideal match for serverless computing, especially

for function chains.

3.2.3 Direct Function Routing & Load balancing within a
function chain. To optimize the invocations within a func-

tion chain we use Direct Function Routing (DFR), which

enables the upstream function in the chain to directly in-

voke/communicate with the downstream function. As shown

in Fig. 4, the SPRIGHT gateway only invokes the head func-

tion in the chain once (① in Fig. 4). When the first function

completes the request message processing (② in Fig. 4), it

directly calls the next function without going through the

SPRIGHT gateway. The rest of the function invocations in

the chain also bypass the SPRIGHT gateway, thus signifi-

cantly reducing the invocation latency (and overhead) for

the function chain.

To manage DFR within the function chain, we introduce

a routing controller in SPRIGHT’s control plane (Fig. 3). The

routing controller configures the routing table based on the

user-defined sequence for the function chain. We keep the

routing table in shared memory to reduce access latency. To

support multiple downstream functions, we use a ‘topic’ (ex-

tracted from the message payload) based publish/subscribe

(PUB/SUB)messagingmodel, and dynamically route requests

using the routing table. The message topic and the ID of cur-

rent function serve as the key to determine the next hop

function ID value in the routing table. For load balancing,

we select the active pod instance with the maximum residual

service capacity and pack its instance ID into the packet de-

scriptor. The invocation is then performed through the SKMSG
based on configured instance ID, without going through the

SPRIGHT gateway.

6

SPRIGHT: Extracting the Server out of Serverless Computing! Submitted for review to SIGCOMM, 2022

3.3 Event-driven proxy (EPROXY)
In Knative, the queue proxy runs as an additional container

in a function pod distinct from the user container. It buffers

incoming requests before forwarding them to the user con-

tainer, to handle traffic bursts and maintain throughput. The

queue proxy is also responsible for collecting metrics for the

pod (e.g., request rate, concurrency level, response time) and

exposing them to a metrics server to facilitate control plane

decision-making, e.g., autoscaling. However, this design has

several drawbacks we described earlier. We overcome these

with our lightweight, event-driven eBPF based EPROXY, re-

placing the queue proxy.

The goal of EPROXY is to achieve functionality compara-

ble to that of the queue proxy, but with lower overhead. We

do not need the queueing capability in the EPROXY as the

shared memory within the function chain already provides

that queueing. Thus, SPRIGHT still provides the same func-

tionality to improve concurrency and handle traffic bursts as

with a queue proxy. But eliminating the additional queuing

stage helps reduce request delays.

To collect the required metrics for the Knative control

plane, we attach eBPF-based monitor programs to the func-

tion pods, as shown in Fig. 4. In addition, we assign a ‘metrics

map’ in the eBPF Maps that serves as a local metrics storage

for each node. When a new request or response occurs, the

monitor programs are triggered to collect and update the

metrics to the metrics map. The SPRIGHT gateway has a

built-in metrics agent, responsible for reading the metrics

map periodically, providing the latest metrics to the met-

rics server. We further extend the SPRIGHT gateway with

internal event-driven metrics collection capabilities as an

enhancement of EPROXY to provide fine-grained L7 metrics.

Since the EPROXY is only triggered when there are incoming

requests, there is no CPU overhead when it is idle.

Kubernetes natively supports function pod health checks

via a kubelet, as an indispensable process for pod manage-

ment running on each physical node. We directly leverage

kubelet’s health check capability to proactively collect this

pod health information and expose it to the control plane for

load balancing decisions. Thus, we can dispense with Kna-

tive’s queue proxy doing a health check to check on function

pods, using HTTP probing.

3.4 eBPF-based dataplane acceleration for
external communication

We exploit eBPF’s XDP/TC hooks to accelerate the communi-

cation by the function chain in SPRIGHT to external compo-

nents. We develop an eBPF forwarding program and attach

it to the XDP/TC hook that is positioned on the receive (RX)

path of the network interface, including the host-side veth

Physical NIC

Function pod

 veth-host

TX RX XDP

TC

①②③

veth-pod
Function pod

 veth-hostTC

veth-pod
Kernel

FIB
table

Routes
lookup

Packets
flow

Figure 6: Dataplane acceleration based on eBPF
XDP/TC hooks

of the pod (i.e., veth-host2) and the physical NIC, as shown

in Fig. 6. eBPF offers packet redirect features (i.e., ‘XDP_
REDIRECT’ and ‘TC_ACT_REDIRECT’) that support pass-

ing raw frames between the virtual network interfaces, or to

and from the physical NIC without going through the kernel

protocol stack [63]. This helps save CPU cycles consumed by

iptables. The eBPF forwarding program has two functions:

1) Look up the kernel FIB (Forwarding Information Base)

table to find the destination network interface based on the

FIB parameters [5] of the received packet, including the IP

5-tuple, index of source interface, etc. 2) Forward the raw

packet frame to the target (veth-host or NIC) interface via
‘XDP_REDIRECT’ or ‘TC_ACT_REDIRECT’. The communi-

cation could be either in the same node or across different

nodes, supported by an eBPF-based dataplane via the eBPF

forwarding program. An XDP program at the physical NIC

processes all inbound packets received by the NIC. It redi-

rects the packet to the veth-host of the destination function

pod after a routing table lookup (① in Fig. 6). The TC pro-

gram at the veth-host handles the outbound packet from the

function pod. Depending on the destination of the packet,

the TC program may take different routes. If the destination

of the packet is to another function pod (e.g., traffic between

ingress gateway pod and SPRIGHT gateway pod) on the

same node, the TC program directly passes the packet to

the veth-host of the destination function pod via ‘TC_ACT_

REDIRECT’ (② in Fig. 6). If the destination function pod is

on another node, the TC program redirects the packet to the

NIC (③ in Fig. 6). Our evaluation in Appendix.B shows that

XDP/TC redirection helps achieve a 1.3× improvement in

throughput and a 20% reduction in latency under peak load.

3.5 Event-driven protocol adaptation
To run a protocol adapter as an internal, lightweight event-

driven component, we predefine ‘protocol adaptation hook

points’ on the packet datapath inside the SPRIGHT gateway,

just before the gateway sends messages to the function pod.

The protocol adaptation hook is a function call entry point

2
A function pod is connected to the host through a pair of veths, i.e., the
host-side veth and pod-side veth.

7

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

that can be invoked to execute customized protocol adapta-

tion programs that are attached. Once an application-specific

message arrives at the hook point, the protocol adaptation

program is triggered and executed. With internal event-

driven execution, invocations are integrated into the same

component without introducing extra context switching and

networking overhead. Our design supports attaching the

protocol adapter program at runtime by exploiting dynamic

code injection [8]. Different programs are pre-compiled into

a dynamic library and can be loaded to, or unloaded from,

the hook point at runtime according to the protocol adapter’s

requirements. This facilitates compatibility when handling

traffic specific to each distinct protocol. In addition, dynamic

loading of the program helps reduce startup time compared

to initializing a separate protocol adapter function pod.

Our adapter works seamlessly with stateless protocol adap-

tation, e.g., HTTP, since the management of the transport

layer (L4) connections is offloaded to the SPRIGHT gateway.

However, some adaptation scenarios with stateful protocols,

e.g.,MQTT, requires an additional L7 connection establish-

ment before exchanging messages [15]. To retain stateless

protocol adaptation, we use the SPRIGHT gateway to handle

the L7 connection establishment rather than the internal

protocol adapter. Then, the SPRIGHT gateway passes the

received application messages to the event-driven protocol

adapter, which extracts the payload from the application

message and delivers it to shared memory. To improve in-

teroperability and compatibility with current serverless plat-

forms, our adapter is designed to be compatible with the

CloudEvent specification [7], an event data format definition

widely adopted by serverless platforms [12, 22].

3.6 Intelligent autoscaling
In the control plane, the autoscaler scrapes metrics from

the metrics server to determine the load intensity, based

on which serverless function instances are automatically

scaled up or down to serve requests on demand. Knative’s

autoscaler depends primarily on the users to specify the

requested resources for their functions based on a single

metric, and is unaware of the complexity of function chains.

To improve on Knative, several approaches, e.g., Mu [53],

GRAF [56], etc. have been proposed, to more effectively scale

cloud resources for serverless applications. SPRIGHT can be

used in conjunction with these advanced autoscalers.

3.7 Overhead auditing (contd.): SPRIGHT
We now perform an audit of overhead for SPRIGHT, follow-

ing the same methodology used before in §2 and compare

it against the base design depicted in Fig. 1. As can be seen

in Table. 2, SPRIGHT significantly reduces overheads for

processing within the function chain. With shared memory

Table 2: Per request data pipeline overhead for
SPRIGHT for a ‘1 broker/front-end + 2 functions’ chain
(excluding client side overhead). Note-2: SPRIGHT uses
DFR: so there is no route④ and⑤ (Fig. 1).④: SPRIGHT’s
direct route from function-1’s pod to function-2’s pod.

Data Pipeline No. External Within chain Total Total
of Kn① ② total ③ ④ total

of copies 1 2 3 0 0 0 3 15

of context switches 1 2 3 2 2 4 7 15

of interrupts 3 4 7 2 2 4 11 25

of proto. processing tasks 1 2 3 0 0 0 3 12

of serialization 1 1 2 0 0 0 2 8

of deserialization 0 1 1 0 0 0 1 7

processing, SPRIGHT achieves 0 data copies, 0 additional pro-
tocol processing, and no serialization/deserialization over-

heads within the chain. Although the use of SKMSG generates
context switches and interrupts, which do add latency for

processing, the total number of context switches and inter-

rupts for SPRIGHT is still much less than that of the base

Knative design (repeated in the last column of Table. 2). In

addition, the results in Fig. 5 show that the context switches

and interrupts introduced by SKMSG have limited impact on

the performance with concurrent processing of just a few

sessions. The event-based shared memory processing brings

substantial reduction of resource usage, more than compen-

sating for any of the added context switches and interrupts.

4 EVALUATION & ANALYSIS
4.1 Serverless Workloads Setup
To examine the improvement of SPRIGHT and its compo-

nents, we consider several typical serverless scenarios, in-

cluding (1) a popular online shopping boutique, (2) An IoT

environment of motion detectors, (3) a more complex pro-

cessing of image detection & charging for an automated

parking garage. For each scenario, we setup a function chain

to execute the serverless application (Fig. 7). The details of

the setup for each scenario are as follows:

1. Online Boutique: ‘Online Boutique’ is an open source

benchmark of microservices consisting of 10 different func-

tions [19]. Based on the online boutique implementation

provided in [19], we measured the average execution time

of each function, which is then used as the CPU service time

of the functions implemented in our SPRIGHT setup (Ap-

pendix.C). We use Locust [14] as the load generator and use

the default workload provided in [19] to implement a realis-

tic web-based shopping application’s request pattern. The

default workload utilizes a total of 6 different sequences of

function chains (Appendix.C). Since the online boutique em-

ploys a front-end proxy to coordinate the invocations within

the chain, we use NGINX as the front-end proxy for the base

8

SPRIGHT: Extracting the Server out of Serverless Computing! Submitted for review to SIGCOMM, 2022

(b) Motion detection
Actuator
function

Sensor
function

Motion
sensor

Light
actuator

(a) Online boutique

(c) Parking: image detection & charging

Camera

Plate detection
function

Plate search
function

Plate-index
function

persist-metadata
function

Charging
function

Email
service

Payment
service

Shipping
service

Currency
service

Checkout
service

Ad service

Catalog
service

Frontend Cart
service

Recommendation
service

redis

Figure 7: Serverless function chains setup

Knative setup. SPRIGHT gateway serves as the front-end

proxy for our SPRIGHT setup.

2. IoT - Indoor motion detection for automated lighting: In-
door motion detection requires tracking a sequence of events

utilizing multiple sensors. The simple function chain con-

tains 2 functions (Fig. 7 (b)). Motion sensors going ‘on’ trig-

gers an actuator function to turn on the light. The light may

be automatically turned off after a period of no activity. We

consider the MERL motion detector dataset [68]. We use a

traffic generator developed in Python to send motion events

based on the timestamps in the dataset. The CPU service

time of the sensor function and actuator function are both

set at 1ms. For the base Knative setup, we use NGINX to

coordinate the communication within the function chain.

3. Parking: image detection & charging: This application
takes snapshots of each parking spot as input for visual occu-

pancy (of parking spots) detection in parking lots. It detects

the vehicle’s license plate and determines whether the plate

metadata is stored in the database through a plate search

function. If it is not stored, a ‘persist-metadata’ function is

invoked to store the plate metadata in the database. Finally,

it charges parking fees based on the license plate’s metadata.

We consider the CNRPark+EXT image dataset collected from

a parking lot with 164 parking spaces [27]. We use the same

load generator used for IoT workload to send snapshot im-

ages (150×150 pixels, ∼ 3KB each) through HTTP/REST API

call. Every 240 second interval, 164 snapshots are sent to the

function chain. We use NGINX to coordinate the message

exchanges within the chain. We use VGG-16 as the image

detection algorithm and the CPU service time of image de-

tection function is set to 435ms [36]. The CPU service times

of other functions are listed in Appendix.C.

We use these serverless applications to quantify the perfor-

mance gain brought by each of SPRIGHT’s optimization. We

evaluate it based on a number of different metrics, including

CPU usage, RPS, response time, and to understand in detail,

show the time series and CDF, when appropriate.

4.2 Experiment setup
The components of testbed is built on top of a base Knative

platform include 1) Knative serving components (v0.22.0) [13];

2) Knative eventing components (v0.22.0) [12]; 3) Kubernetes

components (v1.19.0), including API server, placement en-

gine, etcd, etc [2]. We consider Calico CNI (Native routing

mode) [64] as the underlying networking solution except

the communication within the function chain of SPRIGHT.

We run the experiments on the NSF Chameleon Cloud with

two nodes [45]. Each node has a 64-core Intel Cascade Lake

CPU@2.8 GHz, 192GB memory, and a 10Gb NIC. We use

Ubuntu 20.04 with kernel version 5.15. We configure the

concurrency of both Knative and SPRIGHT function as 32.

The concurrency level of a function pod determines the # of

requests that can be processed in parallel at each time.

4.3 Performance with Realistic Workloads
4.3.1 Comparing SPRIGHT and Knative. We now com-

pare SPRIGHT with Knative, for all the different function

chains (i.e., Ch-1 to Ch-6) of the online boutique application.
To evaluate Knative, DPDK, and SKMSG, we configure differ-
ent concurrency levels (i.e., # of concurrent users) of requests
from the Locust load generator. We select two concurrency

levels 4K and 12K to show here. To get to the 4K concur-

rency, we set the spawn rate of concurrency of 100/sec. The

spawn rate controls the # of concurrency steps to increase

per second. Above 4K, Knative’s performance is highly vari-

able over time, indicating overload (especially very high tail

response times). At 12K, SPRIGHT’s SKMSG alternative con-
sumes about 75% CPU utilization in the core executing the

0 20 40 60 80 100 120 140timestamp (second)
0

600

1200

1800

2400

3000

Re
q/

se
c

DPDK
SKMSG
Knative

Figure 8: RPS for online boutique workload: base Kna-
tive at 4K & {DPDK, SKMSG } at 12K concurrency.

9

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

0 1000 2000 3000 4000
(a) Response time CDF (ms)

0

20

40

60

80

100

%
 o

f r
eq

ue
st

s

Knative: Ch-1
Knative: Ch-2
Knative: Ch-3
Knative: Ch-4
Knative: Ch-5
Knative: Ch-6

0 20 40 60 80 100 120 140
(e) timestamp (second)

0

600

1.2k

1.8k

2.4k

3k

CP
U

us
ag

e
(%

)

Kn-GW
Kn-queue
Kn-fn

0 200 400 600 800
(b) Response time CDF (ms)

0

20

40

60

80

100

%
 o

f r
eq

ue
st

s DPDK: Ch-1
DPDK: Ch-2
DPDK: Ch-3
DPDK: Ch-4
DPDK: Ch-5
DPDK: Ch-6
SKMSG: Ch-1
SKMSG: Ch-2
SKMSG: Ch-3
SKMSG: Ch-4
SKMSG: Ch-5
SKMSG: Ch-6

Figure 9: Online boutique service performance. Top row: Base Knative, 4K concurrency. Bottom row: {DPDK, SKMSG
}, 12K concurrency. (Left) Response time CDF for 6 different function chains; (Middle) Time series of response times
of function chains; (Right) Times series of CPU usage for gateway, function chains, and queue proxy (Knative).

functions, and we sought to demonstrate stable performance

at that point. For 12K concurrency, we set the spawn rate of

concurrency to 500/sec.

At 4K concurrency, Knative’s gateway begins to be over-

loaded. From 10s to 50s (Fig. 8), as the concurrency level of

load generator is ramping up to 4K, the requests/sec (RPS)

increases to (∼890 req/sec). The Knative gateway begins to

overload (at 50s in Fig. 8) due to interrupt processing of in-

coming requests and from the functions in the chain. This

slows down request processing, leading to the reduction in

RPS observed (beyond 50s in Fig. 8). The closed loop nature

of the workload generation and request processing results

in the RPS, resource utilization and response times going

through cycles of overload (occurring again at 113s to 132s).

Fig. 9 (c) further demonstrates the overload of Knative. For

requests sent between 50s and 72s, the response time in-

creases significantly, contributed by large queueing at the

gateway. The resulting large tail latency as shown in Fig. 9

(a) with a 95%ile of 3000ms, measured across all the functions

of the Boutique service. With a concurrency of 4K (from 50s

onwards), the entire Knative setup consumes ∼30 CPU cores,

which is 46% of the total CPU available on the physical node.

Compared to Knative, DPDK and SKMSG both have stable

RPS throughout the experiment for concurrency levels from

4K to 12K. At 4K, The 95%ile latency of DPDK and SKMSG is

160ms, 19× less than Knative (3000ms), while utilizing far

less CPU. Although DPDK constantly consumes CPU cycles

when idle, even at maximum load, it consumes only 10 total

CPU cores, which is 3× less than Knative (similar to Fig. 5).

This again validates the benefits of shared memory process-

ing, saving CPU resources by avoiding the various needless

processing overheads with Knative discussed previously in

§2. SKMSG further reduces the CPU usage dramatically by

using purely event-driven processing compared to DPDK.

With 4K concurrency, SKMSG consumes only 0.42 CPU cores,

including the gateway and all the functions, getting compa-

rable performance (throughput, response time) to DPDK.

We further increase the concurrency level of the load gen-

erator to 12K for DPDK and SKMSG, increasing the utilization
while still maintaining low tail response times. Both DPDK

and SKMSG maintain a stable RPS of ∼2600 req/sec (Fig. 8),
which is 3× higher than the highest stable RPS achieved

with Knative. Even with complex chains, diverse functions

and higher CPU service times for some of the functions, the

performance benefits of SPRIGHT are dramatic. SKMSG uses

much less CPU resources compared to DPDK, even as the

load increases. At 12K concurrency, SKMSG consumes only

∼0.94 CPU cores, which is 10× less than DPDK, showing the

benefit of eBPF-based event driven processing.

With SKMSG generating context switches and interrupts

for descriptor delivery (Table. 2), there is additional latency in

SKMSG’s shared memory processing. SKMSG is slightly worse

than DPDK in terms of tail latency. For the 4th function

chain (i.e., Ch-4) which has the Checkout service function

with a higher CPU service time (260ms), SKMSG shows worse
tail latency compared to DPDK, in Fig. 9 (b). The additional

delay for SKMSG’s descriptor delivery, adds to the transient

queueing and hence longer tail latency. However, as we said

in §3.2.2, the impact of this additional latency introduced

by SKMSG is quite limited. Further, the higher CPU service

time of the functions dwarfs the extra latency introduced by

SKMSG in relative terms. Importantly, the SKMSG throughput

(RPS) is very close to DPDK.

10

SPRIGHT: Extracting the Server out of Serverless Computing! Submitted for review to SIGCOMM, 2022

0 500 1000 1500 2000 2500 3000 3500
(a) timestamp (second)

0

15

30

45

60

Re
sp

on
se

 ti
m

e
(s

ec
) SKMSG Knative

0 500 1000 1500 2000 2500 3000 3500(b) timestamp (second)
0

2

4

6

8

10

CP
U

us
ag

e
(%

)

Kn-queue Kn-fn SKMSG-fn

Figure 10: Time series of response time, and CPU uti-
lization for motion detection workload - 1-hour long
experiments.

4.3.2 Bypassing the impact of cold start and zero scaling.
We set up an experiment with zero scaling enabled in Kna-

tive to study the impact of cold start. Without incoming

requests, Knative scales functions down to zero to save re-

sources and reduce costs. We set the ‘grace period’ for scaling

down to zero as 30 seconds. In contrast, we keep functions

in SPRIGHT ‘warm’ by having a minimum number of active

function pods, knowing that our purely event-driven pro-

cessing will not consume CPU resources when idle. We use

the motion detection workload to study the impact of cold

start, because of the intermittent nature of such IoT traffic.

Fig. 10 (a) clearly shows the impact of cold start in Knative,

with large response times that possibly render the motion

detection application ineffective, and severely violate SLOs.

E.g., starting at 1500s, a number of motion events occur

one after another (inter-arrival time of a few seconds) that

are sent to the currently zero scaled function chain. The

first motion event that arrives at the gateway is queued and

triggers the instantiation of the functions. Since a serverless

function pod take some time to start, subsequent requests

have to be queued. The cascading effect during the cold start

of the entire function chain further degrades the response

time [56], resulting in a long tail latency going up to 60s.

Once the function is active, Knative has a reasonably small

response time when there are consecutive incoming events

(e.g., before the grace period terminates between 2000s and

2500s), that keep the functions ‘warm’.

In contrast, SPRIGHT shows consistently low response

times over the entire runtime of the workload since there is

always an active pod to serve the request without leaving

requests waiting in the queue (we can sidestep going down

to zero-scale). More importantly, although SPRIGHT keeps

one (or more) function warm, the event-driven nature of

0 100 200 300 400 500 600 700
(a) timestamp (second)

0

1

2

3

Re
sp

on
se

 ti
m

e
(s

ec
) SKMSG Knative

Figure 11: Parking: image detection & charging perfor-
mance. (a) Time series of response times of function
chains; (b) Times series of aggregated CPU usage for
function chains, and queue proxy (Knative).

SPRIGHT leads to negligible CPU consumption when there

is no traffic. In fact, with Knative, the higher resource usage

of the queue proxy under load more than offsets any benefit

of Knative’s zero-scaling. E.g., in Fig. 10 (b), the spikes in the

CPU usage for the queue proxy (e.g., at 1500s), even when

handling small traffic is quite wasteful, and is eminently

avoidable with SPRIGHT’s event-driven design.

Since the ‘Parking: image detection & charging’ workload

has a distinct periodic arrival pattern (e.g., monitoring and

billing every 4 minutes), we configure a ‘pre-warm’ phase for

Knative functions 20 seconds before the next burst is sched-

uled to arrive. ‘Pre-warming’ helps avoid the penalty of the

cold start delay of serverless functions, while trading-off a

small amount of the resource savings of shutting down the

pods in serverless computing with zero-scaling [59]. How-

ever, as observed in Fig. 11 (b), the CPU usage for each func-

tion instantiation at the pre-warming stage in fact exceeds

the CPU usage consumed by request processing (i.e., observe
the CPU usage spike for the pre-warming and the function

execution 20 seconds later). Thus, while zero-scaling reduces

CPU usage if the idle period is long, there is a CPU cost

for frequent creation/destruction of functions that has to

be considered. Knative also is quite inefficient for scaling

functions down to zero. When there is no traffic for a grace

period of 30s (e.g., 270s to 300s in Fig. 11 (b)), Knative begins

scaling down the functions to zero. But, functions remain in

a ‘terminating’ state until 380s without being really termi-

nated or releasing CPU resources. Thus, the scaling down

process lasts as long as 80s, during which all the Knative

queue proxies and functions are consuming CPU resources,

which is unnecessary and wasteful.

For comparison, SKMSG consumes only a small amount

of CPU throughout the entire period, in fact with slightly

11

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

lower (about 16%) response times (both average and 95%,

Fig. 11 (a)). Overall, without resorting to zero-scaling, SKMSG
saves up to 41% CPU cycles in this 700s experiment, almost

doubling system capacity compared to Knative.

5 RELATEDWORK
In recent years, a number of serverless platforms have been

launched, e.g., AWS Lambda [28], IBM Cloud Functions [43],

Apache OpenWhisk [4], OpenFaaS [20], Knative [11], etc, to
support cloud-resident applications. Work on understand-

ing the performance impact of commercial or open-source

serverless platforms [31, 49], have guided us on the design

of SPRIGHT. Li et al. [49] showed that the overhead of the

ingress gateway reduced the throughput by 13%, compared to

the performance of function invocation using the ‘direct call’

mode (i.e., the client directly invokes the function instance,

bypassing the ingress gateway). Priscilla et al. [31] studied
the suitability of different serverless function startup modes

(i.e., cold and warm) for supporting IoT applications, indi-

cating that cold start can have significant resource-saving

benefits, but can impact response time. This prompts us to

examine the resource consumption and overheads of each

component carefully.

Several past works have examined the inefficiency and

overheads that exist in Linux networking, including data

copies and context switching [35, 46, 48, 54]. The overhead of

protocol processing [57], and serialization-deserialization [44,

67] directly impacts networking performance, which applies

to the container-based serverless function, including func-

tion chains. A variety of optimizations have been proposed to

improve the network performance for different application

scenarios, which can be complementary to current Linux

networking (e.g., XDP [40], AF_XDP in OVS [65]) or bypass

kernel-based networking (e.g., NetVM for NFV [41]). Our

work combines the advantages of kernel bypass zero-copy

networking where essential for serverless function chains,

and leveraging eBPF-based event-driven processing.

There are multiple proposals to optimize different aspects

of serverless frameworks, e.g., runtime overhead reduction [25,

26, 39, 55], intelligent resource provisioning and traffic man-

agement [53, 60]. Further, [56], [33], [61] aim to optimize

resource allocation and deployment of serverless functions

on the basis of a chain, which improves the efficiency and

flexibility for building microservices using serverless func-

tion chaining. However, they do not focus on optimizing the

dataplane, which as we show has a significant impact.

‘Cold start’ in serverless: The cold start latency of server-

less functions detracts from their being an ideal framework

for building microservices. Fu et al. [37] propose a startup
latency optimization specifically for Kubernetes-based en-

vironments by placing pods on nodes that have container

image dependencies locally to avoid the latency of pulling

images. However, their 95%ile startup latency after optimiza-

tion is still around 23s, which still severely impacts the QoS.

In addition, start-up (either cold start or pre-warm [59]) adds

additional costs as we have observed, making optimizations

built around cold start less desirable. A policy of ‘keep-warm’

of pods has been an alternative to mitigate the cold start

latency in serverless [50]. They can achieve 85% improve-

ment of the tail (99%ile) latency. Although, [50] consider-

ably improves the SLOs, it is built on top of Knative with

heavyweight components (e.g., queue proxy) and the result

is excessive resource usage. Fuerst et al. [38] consider greedy-
dual caching to determine which functions should be kept

as warm. By factoring in several key indicators of a function,

e.g., memory footprint, invocation frequency etc. , they can

prioritize functions to be kept warm, thus limiting memory

consumption to keep a minimum number of warm functions

and achieve SLOs. Since SPRIGHT primarily contributes to

control the CPU usage, [38] can be a good complement to

SPRIGHT to reduce memory utilization.

6 CONCLUSIONS
SPRIGHT demonstrated the effectiveness of event-driven ca-

pability for reducing resource usage in serverless cloud envi-

ronments. With extensive use of eBPF-based event-driven ca-

pability in conjunction with high-performance shared mem-

ory processing, SPRIGHT achieves up to 3× throughput

improvement, 19× latency reduction and 31× CPU usage

savings than Knative serving a complex web workload. Com-

pared to an environment using DPDK for providing shared

memory and zero-copy delivery, SPRIGHT achieves compet-

itive throughput and latency, while consuming 10× less CPU

resources. Additionally, for intermittent request arrivals typ-

ical of IoT applications, SPRIGHT still improves the average

latency by 16%, compared to Knative using ‘pre-warmed’

functions, while reducing CPU cycles by 41%. This makes it

feasible for SPRIGHT to support several ‘warm’ functions at

a minimum overhead (as CPU usage is load-proportional),

side-stepping the ‘cold-start’ latency problem. Across sev-

eral typical serverless workloads, SPRIGHT shows higher

dataplane performance, while reducing the inefficiencies in

current open-source serverless environments, thus getting

us closer to meeting the promise of serverless computing.

We recognize the need for isolation between serverless

functions in a shared and untrusted cloud environment, espe-

cially with the use of SPRIGHT’s shared memory processing.

We are implementing function-chain-level separation by re-

stricting access of a private shared memory pool to only

trusted functions of that chain. The SPRIGHT gateway fur-

ther provides traffic isolation by routing requests into the pri-

vate shared memory pool based on the destination function

chain. We expect to report on experiments to demonstrate

its efficacy shortly.

12

SPRIGHT: Extracting the Server out of Serverless Computing! Submitted for review to SIGCOMM, 2022

REFERENCES
[1] 2021. ab - Apache HTTP server benchmarking tool. https://httpd.

apache.org/docs/2.4/programs/ab.html. (2021). [online].

[2] 2021. Kubernetes Components. kubernetes.io/docs/concepts/

overview/components/. (2021). [online].

[3] 2021. wrk - a HTTP benchmarking tool. github.com/wg/wrk. (2021).

[online].

[4] 2022. Apache OpenWhisk. openwhisk.apache.org/. (2022). [online].

[5] 2022. BPF-HELPERS - list of eBPF helper functions. man7.org/linux/

man-pages/man7/bpf-helpers.7.html. (2022). [online].

[6] 2022. Chaining OpenFaaS functions. ericstoekl.github.io/faas/

developer/chaining_functions/. (2022). [online].

[7] 2022. CloudEvents Spec. github.com/cloudevents/spec. (2022). [on-

line].

[8] 2022. Dynamically Loaded (DL) Libraries. tldp.org/HOWTO/

Program-Library-HOWTO/dl-libraries.html. (2022). [online].

[9] 2022. Istio Architecture. istio.io/latest/docs/ops/deployment/

architecture/. (2022). [online].

[10] 2022. Istio Traffic Management. istio.io/latest/docs/concepts/

traffic-management/. (2022). [online].

[11] 2022. Knative. knative.dev. (2022). [online].

[12] 2022. Knative Eventing. knative.dev/docs/eventing/. (2022). [online].

[13] 2022. Knative Serving. knative.dev/docs/serving/. (2022). [online].

[14] 2022. Locust: An open source load testing tool. locust.io/. (2022).

[online].

[15] 2022. MQTT Version 5.0. docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.

0.html. (2022). [online].

[16] 2022. Multi-process Support of DPDK. doc.dpdk.org/guides/prog_

guide/multi_proc_support.html. (2022). [online].

[17] 2022. NGINX. www.nginx.com/. (2022). [online].

[18] 2022. of-watchdog. github.com/openfaas/of-watchdog. (2022). [on-

line].

[19] 2022. Online Boutique by Google. github.com/GoogleCloudPlatform/

microservices-demo. (2022). [online].

[20] 2022. OpenFaaS. www.openfaas.com/. (2022). [online].

[21] 2022. OpenFaaSAPI Gateway / Portal. docs.openfaas.com/architecture/

gateway/. (2022). [online].

[22] 2022. OpenFaaS Triggers. docs.openfaas.com/reference/triggers/.

(2022). [online].

[23] 2022. OpenWhisk - Creating action sequences. github.com/apache/

openwhisk/blob/master/docs/actions.md#creating-action-sequences.

(2022). [online].

[24] 2022. OpenWhisk Composer. github.com/apache/

openwhisk-composer. (2022). [online].

[25] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.

Firecracker: Lightweight Virtualization for Serverless Applications.

In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419–434.

https://www.usenix.org/conference/nsdi20/presentation/agache

[26] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus

Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:

Towards High-Performance Serverless Computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Associa-

tion, Boston, MA, 923–935. https://www.usenix.org/conference/atc18/

presentation/akkus

[27] Giuseppe Amato, Fabio Carrara, Fabrizio Falchi, Claudio Gennaro, and

Claudio Vairo. 2016. Car parking occupancy detection using smart

camera networks and deep learning. In Computers and Communication
(ISCC), 2016 IEEE Symposium on. IEEE, 1212–1217.

[28] Amazon Web Services, Inc. 2022. AWS Lambda. aws.amazon.com/

lambda/. (2022). [online].

[29] Amazon Web Services, Inc. 2022. AWS Serverless API.

docs.aws.amazon.com/serverless-application-model/latest/

developerguide/sam-resource-api.html. (2022). [online].

[30] Apache Software Foundation. 2022. APACHE KAFKA. kafka.apache.

org/. (2022). [online].

[31] Priscilla Benedetti, Mauro Femminella, Gianluca Reali, and Kris Steen-

haut. 2021. Experimental Analysis of the Application of Serverless

Computing to IoT Platforms. Sensors 21, 3 (2021), 928.
[32] Matteo Bertrone, Sebastiano Miano, Jianwen Pi, Fulvio Risso, and

Massimo Tumolo. 2018. Toward an eBPF-based clone of iptables.

Netdev’18 (2018).
[33] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,

Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021.

Kraken: Adaptive Container Provisioning for Deploying Dynamic DAGs
in Serverless Platforms. Association for Computing Machinery, New

York, NY, USA, 153–167. https://doi.org/10.1145/3472883.3486992

[34] Carsten Bormann, Angelo P Castellani, and Zach Shelby. 2012. Coap:

An application protocol for billions of tiny internet nodes. IEEE Internet
Computing 16, 2 (2012), 62–67.

[35] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang,

and Rachit Agarwal. 2021. Understanding Host Network Stack Over-

heads. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference
(SIGCOMM ’21). Association for Computing Machinery, New York, NY,

USA, 65–77. https://doi.org/10.1145/3452296.3472888

[36] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020.

ECML: Improving Efficiency of Machine Learning in Edge Clouds. In

2020 IEEE 9th International Conference on Cloud Networking (CloudNet).
1–6. https://doi.org/10.1109/CloudNet51028.2020.9335804

[37] Silvery Fu, RadhikaMittal, Lei Zhang, and Sylvia Ratnasamy. 2020. Fast

and Efficient Container Startup at the Edge via Dependency Scheduling.

In 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20).
USENIX Association. https://www.usenix.org/conference/hotedge20/

presentation/fu

[38] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping

Serverless Computing Alive with Greedy-Dual Caching. In Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2021).
Association for Computing Machinery, New York, NY, USA, 386–400.

https://doi.org/10.1145/3445814.3446757

[39] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila

Cherkasova, and Gabriel Parmer. 2020. Sledge: A Serverless-First,

Light-Weight Wasm Runtime for the Edge. In Proceedings of the 21st
International Middleware Conference (Middleware ’20). Association
for Computing Machinery, New York, NY, USA, 265–279. https:

//doi.org/10.1145/3423211.3425680

[40] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,

John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.

The EXpress Data Path: Fast Programmable Packet Processing in

the Operating System Kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’18). Association for Computing Machinery, New York, NY,

USA, 54–66. https://doi.org/10.1145/3281411.3281443

[41] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM:

High Performance and Flexible Networking Using Virtualization on

Commodity Platforms. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association,

Seattle, WA, 445–458. https://www.usenix.org/conference/nsdi14/

technical-sessions/presentation/hwang

[42] IBM. 2022. Creating serverless REST APIs. cloud.ibm.com/docs/

openwhisk?topic=openwhisk-apigateway. (2022). [online].

13

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
kubernetes.io/docs/concepts/overview/components/
kubernetes.io/docs/concepts/overview/components/
github.com/wg/wrk
openwhisk.apache.org/
man7.org/linux/man-pages/man7/bpf-helpers.7.html
man7.org/linux/man-pages/man7/bpf-helpers.7.html
ericstoekl.github.io/faas/developer/chaining_functions/
ericstoekl.github.io/faas/developer/chaining_functions/
github.com/cloudevents/spec
tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html
tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html
istio.io/latest/docs/ops/deployment/architecture/
istio.io/latest/docs/ops/deployment/architecture/
istio.io/latest/docs/concepts/traffic-management/
istio.io/latest/docs/concepts/traffic-management/
knative.dev
knative.dev/docs/eventing/
knative.dev/docs/serving/
locust.io/
docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
doc.dpdk.org/guides/prog_guide/multi_proc_support.html
doc.dpdk.org/guides/prog_guide/multi_proc_support.html
www.nginx.com/
github.com/openfaas/of-watchdog
github.com/GoogleCloudPlatform/microservices-demo
github.com/GoogleCloudPlatform/microservices-demo
www.openfaas.com/
docs.openfaas.com/architecture/gateway/
docs.openfaas.com/architecture/gateway/
docs.openfaas.com/reference/triggers/
github.com/apache/openwhisk/blob/master/docs/actions.md##creating-action-sequences
github.com/apache/openwhisk/blob/master/docs/actions.md##creating-action-sequences
github.com/apache/openwhisk-composer
github.com/apache/openwhisk-composer
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
aws.amazon.com/lambda/
aws.amazon.com/lambda/
docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-api.html
docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-api.html
kafka.apache.org/
kafka.apache.org/
https://doi.org/10.1145/3472883.3486992
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1109/CloudNet51028.2020.9335804
https://www.usenix.org/conference/hotedge20/presentation/fu
https://www.usenix.org/conference/hotedge20/presentation/fu
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3423211.3425680
https://doi.org/10.1145/3423211.3425680
https://doi.org/10.1145/3281411.3281443
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
cloud.ibm.com/docs/openwhisk?topic=openwhisk-apigateway
cloud.ibm.com/docs/openwhisk?topic=openwhisk-apigateway

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

[43] IBM. 2022. IBM Cloud Functions. cloud.ibm.com/functions/. (2022).

[online].

[44] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-

ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-

filing a Warehouse-Scale Computer. SIGARCH Comput. Archit. News
43, 3S (jun 2015), 158–169. https://doi.org/10.1145/2872887.2750392

[45] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,

Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody

Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex

Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon

Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

[46] Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao. 2021. Par-

allelizing Packet Processing in Container Overlay Networks. In Pro-
ceedings of the Sixteenth European Conference on Computer Systems
(EuroSys ’21). Association for Computing Machinery, New York, NY,

USA, 261–276. https://doi.org/10.1145/3447786.3456241

[47] Joshua Levin and Theophilus A. Benson. 2020. ViperProbe: Rethinking

Microservice Observability with eBPF. In 2020 IEEE 9th International
Conference on Cloud Networking (CloudNet). 1–8. https://doi.org/10.
1109/CloudNet51028.2020.9335808

[48] Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the Cost

of Context Switch. In Proceedings of the 2007 Workshop on Experimental
Computer Science (ExpCS ’07). Association for Computing Machinery,

New York, NY, USA, 2–es. https://doi.org/10.1145/1281700.1281702

[49] Junfeng Li, Sameer G. Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019.

Understanding Open Source Serverless Platforms: Design Considera-

tions and Performance. In Proceedings of the 5th International Workshop
on Serverless Computing (WOSC ’19). Association for Computing Ma-

chinery, New York, NY, USA, 37–42. https://doi.org/10.1145/3366623.

3368139

[50] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Server-

less Platforms: A Pool-BasedApproach. (2019). arXiv:cs.DC/1903.12221

[51] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vásquez

Bernal, Yunsong Lu, and Jianwen Pi. 2019. Securing Linux with a

Faster and Scalable Iptables. SIGCOMM Comput. Commun. Rev. 49, 3
(nov 2019), 2–17. https://doi.org/10.1145/3371927.3371929

[52] Microsoft. 2022. Azure - Function chaining in Durable Func-

tions. docs.microsoft.com/en-us/azure/azure-functions/durable/

durable-functions-sequence?tabs=csharp. (2022). [online].

[53] Viyom Mittal, Shixiong Qi, Ratnadeep Bhattacharya, Xiaosu Lyu, Jun-

feng Li, Sameer G. Kulkarni, Dan Li, Jinho Hwang, K. K. Ramakrish-

nan, and Timothy Wood. 2021. Mu: An Efficient, Fair and Respon-
sive Serverless Framework for Resource-Constrained Edge Clouds. As-
sociation for Computing Machinery, New York, NY, USA, 168–181.

https://doi.org/10.1145/3472883.3487014

[54] Jeffrey C Mogul and KK Ramakrishnan. 1997. Eliminating receive

livelock in an interrupt-driven kernel. ACM Transactions on Computer
Systems 15, 3 (1997), 217–252.

[55] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:

Rapid Task Provisioning with Serverless-Optimized Containers. In

2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 57–70. https://www.usenix.org/conference/

atc18/presentation/oakes

[56] Jinwoo Park, Byungkwon Choi, Chunghan Lee, and Dongsu Han. 2021.

GRAF: A Graph Neural Network Based Proactive Resource Allocation

Framework for SLO-Oriented Microservices. In Proceedings of the 17th
International Conference on Emerging Networking EXperiments and
Technologies (CoNEXT ’21). Association for Computing Machinery,

New York, NY, USA, 154–167. https://doi.org/10.1145/3485983.3494866

[57] ShixiongQi, Sameer G. Kulkarni, and K. K. Ramakrishnan. 2021. Assess-

ing Container Network Interface Plugins: Functionality, Performance,

and Scalability. IEEE Transactions on Network and Service Management
18, 1 (2021), 656–671. https://doi.org/10.1109/TNSM.2020.3047545

[58] Red Hat, Inc. 2022. Understanding the eBPF networking

features in RHEL. access.redhat.com/documentation/en-us/

red_hat_enterprise_linux/8/html/configuring_and_managing_

networking/assembly_understanding-the-ebpf-features-in-rhel_

configuring-and-managing-networking. (2022). [online].

[59] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. 2020. Serverless in theWild: Char-

acterizing and Optimizing the Serverless Workload at a Large Cloud

Provider. In 2020 USENIXAnnual Technical Conference (USENIXATC 20).
USENIX Association, 205–218. https://www.usenix.org/conference/

atc20/presentation/shahrad

[60] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mo-

hammed Danish Shaikh, Shivaram Venkataraman, and Aditya

Akella. 2021. Atoll: A Scalable Low-Latency Serverless Platform.

Association for Computing Machinery, New York, NY, USA, 138–152.

https://doi.org/10.1145/3472883.3486981

[61] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth

Lanka. 2020. Sequoia: Enabling Quality-of-Service in Serverless Com-

puting. In Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC ’20). Association for Computing Machinery, New York, NY, USA,

311–327. https://doi.org/10.1145/3419111.3421306

[62] The Linux Foundation. 2022. eBPF. ebpf.io/. (2022). [online].

[63] Tigera, Inc. 2022. eBPF XDP: The Basics and a Quick Tutorial. www.

tigera.io/learn/guides/ebpf/ebpf-xdp/. (2022). [online].

[64] Tigera, Inc. 2022. Project Calico. www.tigera.io/project-calico/. (2022).

[online].

[65] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. Re-

visiting the Open VSwitch Dataplane Ten Years Later. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). As-
sociation for Computing Machinery, New York, NY, USA, 245–257.

https://doi.org/10.1145/3452296.3472914

[66] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico,

Elerson R. S. Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M.

Vieira. 2020. Fast Packet Processing with EBPF and XDP: Concepts,

Code, Challenges, and Applications. ACM Comput. Surv. 53, 1, Article
16 (feb 2020), 36 pages. https://doi.org/10.1145/3371038

[67] AdamWolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon Kim,

Rajit Manohar, and Robert Soulé. 2021. Zerializer: Towards Zero-Copy

Serialization. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS ’21). Association for Computing Machinery, New York,

NY, USA, 206–212. https://doi.org/10.1145/3458336.3465283

[68] Christopher R. Wren, Yuri A. Ivanov, Darren Leigh, and Jonathan

Westhues. 2007. The MERL Motion Detector Dataset. In Proceedings
of the 2007 Workshop on Massive Datasets (MD ’07). Association for

Computing Machinery, New York, NY, USA, 10–14. https://doi.org/10.

1145/1352922.1352926

[69] Muneer Bani Yassein, Mohammed Q Shatnawi, Shadi Aljwarneh, and

Razan Al-Hatmi. 2017. Internet of Things: Survey and open issues of

MQTT protocol. In 2017 international conference on engineering & MIS
(ICEMIS). IEEE, 1–6.

[70] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato,

Gregoire Todeschi, K.K. Ramakrishnan, and Timothy Wood. 2016.

OpenNetVM: A Platform for High Performance Network Service

Chains. In Proceedings of the 2016 ACM SIGCOMMWorkshop on Hot
Topics in Middleboxes and Network Function Virtualization. ACM.

[71] Jianer Zhou, Xinyi Qiu, Zhenyu Li, Gareth Tyson, Qing Li, Jingpu Duan,

and Yi Wang. 2021. Antelope: A Framework for Dynamic Selection

14

cloud.ibm.com/functions/
https://doi.org/10.1145/2872887.2750392
https://doi.org/10.1145/3447786.3456241
https://doi.org/10.1109/CloudNet51028.2020.9335808
https://doi.org/10.1109/CloudNet51028.2020.9335808
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1145/3366623.3368139
http://arxiv.org/abs/cs.DC/1903.12221
https://doi.org/10.1145/3371927.3371929
docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-sequence?tabs=csharp
docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-sequence?tabs=csharp
https://doi.org/10.1145/3472883.3487014
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/3485983.3494866
https://doi.org/10.1109/TNSM.2020.3047545
access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking
access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking
access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking
access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_understanding-the-ebpf-features-in-rhel_configuring-and-managing-networking
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3472883.3486981
https://doi.org/10.1145/3419111.3421306
ebpf.io/
www.tigera.io/learn/guides/ebpf/ebpf-xdp/
www.tigera.io/learn/guides/ebpf/ebpf-xdp/
www.tigera.io/project-calico/
https://doi.org/10.1145/3452296.3472914
https://doi.org/10.1145/3371038
https://doi.org/10.1145/3458336.3465283
https://doi.org/10.1145/1352922.1352926
https://doi.org/10.1145/1352922.1352926

SPRIGHT: Extracting the Server out of Serverless Computing! Submitted for review to SIGCOMM, 2022

of Congestion Control Algorithms. In 2021 IEEE 29th International
Conference on Network Protocols (ICNP). 1–11.

A A CASE STUDY OF MQTT PROTOCOL
ADAPTER

The MQTT adapter translates the MQTT ‘PUBLISH’ mes-

sage (i.e., themessage type used byMQTT-based components

to forward the payload to subscriber functions) in the pay-

load by removing the application layer header. Once the

adapter intercepts an MQTT ‘PUBLISH’ message, it extracts

the MQTT-related metadata (e.g., topic) and the payload.

The payload is stored in shared memory. The MQTT-related

metadata (e.g., topic) is used for making the appropriate

DFR routing decision based on the subscribing function’s

information. In this way, serverless functions in SPRIGHT

can transparently handle MQTT requests without changing

any application logic and still support the stateful processing

needed for MQTT. Our adapter design can be easily extended

to support other application-specific protocols, e.g., CoAP.

1 2 4 8 16 32 64 12
8
25

6
51

2
Concurrency

0

10

20

30

40

50

RP
S

(X
 1

K
re

q/
s)

With TC/XDP
Without TC/XDP

1 2 4 8 16 32 64 12
8
25

6
51

2
Concurrency

0.0

0.1

0.2

0.3

Av
e.

 la
te

nc
y

(m
s)

With TC/XDP
Without TC/XDP

Figure 12: Performance impact of TC/XDP redirect:
RPS and latency

Without TC/XDP With TC/XDP
0

10

20

30

40

50

X
1K

 c
yc

le
s/

re
qu

es
t Host's

network layer
Pod's
socket layer
Pod's
protocol layer
Pod's
network layer
Pod's
link layer
Host's
link layer

Figure 13: CPU overhead breakdown of receiver side
kernel stacks: with/without TC/XDP redirect accelera-
tion.

B IMPROVEMENTWITH DATAPLANE
ACCELERATION BASED ON EBPF’S
XDP/TC HOOKS

To understand the improvement of eBPF’s packet redirec-

tion features, including ‘XDP_REDIRECT’ and ‘TC_ACT_

REDIRECT’, we evaluate the networking performance of

SPRIGHT when the eBPF’s packet redirection is enabled.

We reuse the experiment setup of SKMSG described in §3.2.2.

We further breakdown the CPU cycles of the kernel stack

processing to accurately quantify the CPU cycles saved by

eBPF-based packet redirection.

Fig. 12 compares the RPS and response latency perfor-

mance of SPRIGHT with eBPF’s packet redirection feature

enabled and disabled. With a concurrency of 32, SPRIGHT

with TC/XDP redirection enabled has a 1.3× improvement

in RPS compared to SPRIGHT without TC/XDP redirection.

Since TC/XDP redirection transfers raw packets between

network devices (i.e., veth and NIC), the overhead spent in

kernel iptables can be saved, thus in turn benefiting through-

put. The response latency of SPRIGHT with TC/XDP redirec-

tion is 19𝜇s for a concurrency of 32, which is 5𝜇s less than

SPRIGHT without TC/XDP redirection (24𝜇s). The overhead

and response latency savings remain as the concurrency in-

creases, allowing SPRIGHT to maintain a peak RPS of 53K

when TC/XDP redirection is enabled.

We further break down the CPU cycles spent on process-

ing a request (at 32 concurrency) based on where it is spent,

including host’s kernel stack and the pod’s kernel stack, as

shown in Fig. 13. The client side overhead is excluded. In

the case of SPRIGHT without TC/XDP redirection, about

15.2K CPU cycles are spent on the host’s kernel networking

layer for iptables processing. Whereas with SPRIGHT with

TC/XDP redirection, since iptables in host’s kernel stack is

skipped, only 2.1K CPU cycles are consumed by the host’s

kernel networking layer, resulting in 86% CPU cycles saving

for each request. This clearly demonstrates the benefits of

eBPF’s TC/XDP redirection. Bypassing the host’s kernel net-

working stack and associated iptables processing can save

considerable CPU usage and thus benefit SPRIGHT’s data-

plane performance for communication outside the function

chain. This option, however, means the loss of full-featured

iptables network policy support, which may not be required

in all cases (e.g., for users only requiring higher dataplane

performance).

C ADDITIONAL EXPERIMENT DETAILS

15

Submitted for review to SIGCOMM, 2022 Anonymous.et al.

Table 3: CPU service time of functions in online bou-
tique

No. Functions CPU service time (ms)
① Product Catalog Service 0.6

② Recommendation Service 2.5

③ Checkout Service 260

④ Currency Service 0.9

⑤ Ad Service 1.1

⑥ Email Service 0.5

⑦ Payment Service 0.44

⑧ Shipping Service 0.2

⑨ Cart Service 1.2

Table 4: Sequence of different function chains in online
boutique

Sequence of the function chain
Ch-1 ④, ①, ⑨, ④, ④, ④, ④, ④, ④, ④, ④, ⑤

Ch-2 ④, ⑨, ②, ①, ①, ①, ①, ①, ⑧, ④, ①, ④

Ch-3 ①, ⑨

Ch-4 ③, ①, ⑦, ⑧, ⑥, ②, ①, ①, ①, ①, ①, ④

Ch-5 ①, ④, ⑨, ④, ②, ①, ①, ①, ①, ①, ⑤

Ch-6 ④

Table 5: CPU service time of functions in parking: im-
age detection & charging

No. Functions CPU service time (ms)
① Plate detection 435

② Plate search 20

③ Plate index 1

④ Charging 50

⑤ Persist metadata 10

Table 6: Sequence of different function chains in park-
ing: image detection & charging

Sequence of the function chain
Ch-1 ①, ②, ③, ⑤, ④

Ch-2 ①, ②, ④

16

	Abstract
	1 Introduction
	2 Background and Challenges
	3 System Design of SPRIGHT
	3.1 Overview of SPRIGHT
	3.2 Optimizing communication within serverless function chains
	3.3 Event-driven proxy (EPROXY)
	3.4 eBPF-based dataplane acceleration for external communication
	3.5 Event-driven protocol adaptation
	3.6 Intelligent autoscaling
	3.7 Overhead auditing (contd.): SPRIGHT

	4 Evaluation & Analysis
	4.1 Serverless Workloads Setup
	4.2 Experiment setup
	4.3 Performance with Realistic Workloads

	5 Related work
	6 Conclusions
	References
	A A case study of MQTT protocol adapter
	B Improvement with dataplane acceleration based on eBPF's XDP/TC hooks
	C Additional experiment details

